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NOMENCLATURE 

coefficients ; 
specific heat at constant pressure; 
gravitational acceleration ; 
thermal conductivity ; 
permeability ; 
length of similarity pattern; 
depth of well ; 
Nusselt number; 
heat-transfer rate through well opening; 
radial position ; 
well radius ; 
Rayleigh number; 
temperature ; 
well-wall temperature ; 
reservoir temperature; 
temperature, Oseen solution ; 
vertical velocity ; 
vertical velocity, Oseen solution ; 
vertical velocity infinitely far from wall; 
radial velocity ; 
velocity perpendicular to the wall ; 
vertical position ; 
distance from vertical wall ; 
total thickness of vertical boundary layer; 
dimensional quality ; 
pertaining to the core. 

Greek symbols 

a, thermal diffusivity ; 
BY coefficient of thermal expansion; 

Y, core radius ; 

horizontal length scale, Oseen solution ; 
viscosity; 
kinematic viscosity ; 
density ; 
stream function. 

I. INTRODUCTION 

BOUYANCY-INDUCED convection in fluid-saturated porous 
media is an important topic in contemporary heat-transfer 
research. The objective of this article is to outline an analysis 
of the natural convection mechanism in a vertical cylindrical 
well filled with porous medium [l]. The well opens into a 
semi-infinite space filled with the same porous medium. In 
what follows we analyze the convection pattern generated 
when the cylindrical wall and the semi-infinite space are 
maintained at different temperatures. 

The present problem is related to the work of Minkowycz 
and Cheng on convection about a vertical cylinder [2] and 
about a vertical plane [3]. The Minkowycz and Cheng 
studies, as well as the present one, are aimed at explaining the 
interaction between a very large porous reservoir and an 
irregular impermeable surface bordering the reservoir from 
above or below. The impermeable surface may protrude 
mto the porous medium, as in [2,3], or it may have 
concavities filled by the neighboring porous material. The 
latter set of circumstances is the subject of the present 
investigation. 

2. MATHEMATICAL FORMULATION 

We model the fluid-saturated porous medium as homo- 
geneous [4] with the following physical properties: fluid 
density, p; viscosity, b; coefficient of thermal expansion, 0; 
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thermal conductivity of solid-fluid matrix, k; and thermal 
diffusivity a = k/&J, where c,, is the fluid specific heat at 
constant pressure. In the cylindrical geometry sketched in 
Fig. 1 the dimensionless equations governing conservation of 
mass, momentum and energy in steady-state are 

ax r ar 

where 

x = x*/L, r = @JR, 

u = u*R’/(aL), v = v*R/a, (4,5,6,7) 

TJWLV*-TJ 
av 

In definitions (4)-(g) the asterisk indicates the dimensional 
variables of the problem. In the same definitions, R, Land T, 
are the well radius, height and wall temperature, respectively. 
The momentum equation (2) is based on the Darcy flow 
model, while K appearing in equation (8) is the permeability 
of the porous medium. 

It is convenient to place the analysis in the limit in which 
the well is slender, R/L CC 1. Therefore, equations (2) and (3) 
will be considered without the terms multiplied by (R/L)‘. 
The appropriate boundary conditions for the solid cylindrical 
wall are 

v=O, T=O at r=l, (9,W 

u=O, T=O atx=O. (11312) 

Special attention must be paid to the boundary condition at 
x = 1 where the well communicates with the semi-infinite 
reservoir. In Fig. 1 the reservoir is relatively colder (T2 < T,) 
and is situated above the well. This is a potentially unstable 
configuration which leads to fluid motion, cold fluid falling 
into the well through the middle of the circular cross-section 
and warmer fluid rising along the heated cylindrical wall. In 
the analysis we assume that the centerline temperature at the 
mouth of the well equals the reservoir temperature, 

RZ 
T= -Ra, L 0 at x = 1, r = 0, (13) 

where RaL is the Darcy-Rayleigh number based on the height 
of the well, 

Ra 
L 

= WWT, - T,) > o, 
av 

3. THE SIMILARITY REGIME 

First, let us consider the existence of a free convection 
pattern in which the velocity and temperature radial profiles 
have the same shape independent of vertical position. Upon 
examining equations (l)-(3) we find that a similarity solution 
is possible, one with both u and T proportional to x while v is 
a function only of radial position. The similarity regime is 
therefore similar to the one found by Lighthill in vertical 
tubes filled with fluid [5]. 

Exact analytical solutions for u, v and T, given by equations 
(l)-(3) without the (R/L)’ terms, are impossible due to the 
nonlinearity associated with the convection terms in equation 
(3). Following Lighthill’s analysis, we seek solutions which 
satisfy equation (3) in an integral fashion and at specified 
locations, namely, along the centerline r = 0 and at the wall 
r= 1: 

&( 1; ruTdr)=(Z),;; (15) 

X=1 

x-o ~ 

,T=-Ra,(R/L)’ 

-T=O 

FIG. 1. Streamline pattern in the similarity regime; the 
numbers on the figure indicate the value of $/( -0.7215). 

O=($+; g),=,. (16,17) 

Next, we select polynomial expressions for temperature and 
vertical velocity 

T = x(ao + a2r2 + a/ + a,/), (18) 

u = x(b,, + a2r2 + a,/ + a6r6) (19) 

which satisfy the momentum equation (2) identically. The five 
unknown coefficients appearing in expressions (18) and (19) 
are determined from conditions (I), (10) and (15)-(17). The 
result is 

aa = -11.81, a2 = 21.27, a, = -12.781, 

a, = 3.31 b, = -7.206. (20) 

Figure 1 displays a set of streamlines $ = constant, the 
streamfunction IJ having been defined in the usual manner by 
writing u = (a+/ar)/r and v = -(&j//a.+. Cold fluid creeps 
down the centerline, gradually warming up the further it 
reaches into the well. At the same time a layer ofwarmer fluid 
rises along the cylindrical wall. 

An important feature of the similarity flow is that the depth 
to which the free convection pattern of Fig. 1 penetrates the 
well is proportional to the temperature difference driving the 
flow. More specifically, the temperature condition (13) com- 
bined with the temperature distribution (18) yields 

i = 0.0847 Ra, g 
0 

‘. 

Here, l is the physical length of the similarity pattern. In a well 
of finite depth L, a similarity pattern will exist as long as 1 $ L, 
i.e. as long as 

R2 
RaL z 0 _< 11.81. (22) 

For values of Ra,(R/L)’ higher than 11.81 the temperature 
and velocity fields depart from the similarity regime. The 
critical value 11.81 can only be regarded as approximate, the 
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result of having chosen to replace the energy-conservation 
statement (3) via conditions (15))(17). Relying on different 
sets of conditions, in [l] it is demonstrated that 11.81 is 
indeed a representative value of Ra,(R/L)’ above which a 
similarity regime ceases to exist. 

J. THE BOUNDAR\ LAYER REGIME 

We now turn our attention to the high Rayleigh-number 
limit in which the fluid motion is concentrated in thin 
boundary layer near the cylindrical wall. We first present an 
integral solution of the type developed by Lighthill for 
convection in vertical tubes filled with Newtonian fluid [5]. In 
the second part of this section we present an alternative 
solution based on the Oseen linearization technique which 
recently was shown to give very good results when applied to 
problems of free convection in enclosures [6-91. 

integral method 
Consider the fluid in the well as an isothermal core of 

radius y(x) and an annular boundary layer of thickness 
1 - y(x). The piecewise continuous profiles selected for 
temperature and vertical velocity are 

T = T,, u = II,, 0 < r < ‘r, (23.24) 

with 

x = PJL, j’ = .l’*.!J, (32.33) 

li = a* P/(aL), w = It.* 61%. 

P = (T -- T‘,)!(T, -- T>). (34.35. it,1 

The horizontal length scale is (5 = LRa,, ’ I. Since m the 
boundary-layer regime 6/R << 1, hence $:L CC 1. the terms 
multiplied by (S/L)’ in equations (30) and (31) ntll he 
neglected. The boundary conditions are 

\(‘ = 0, -i = 0 at i _ !I. ii.281 

i=Li,(x), i= m-1 as \‘ -+ i ! 39. ‘kl 1 

Eliminating the temperature between equations (30) and 
(3 1) yields 

141) 

The Oseen method consists of treating w and TX as unknown 
functions of x. Thus, equation (41) can be integrated in 1’ 
subject to conditions (37))(40) 

c = exp[yw(x)] + u*,(x), ? = exp[yw(x)] - 1. (42,43) 

The unknown functions w(x) and ti, (x) are determined from 
integral mass and energy conservation statements 2 

, ;‘<r< I (25,26) 

i 

1 
u^dq. = 0, (44.4s) 

-0 where T, and u, are the core temperature and velocity, The 
mass conservation condition 

1 
urdr=O 

requires 

n,=;(3-27-gZ). (27) 

Combining equations (23)-(27) with energy integral (15) and 
recognizing that T, = -Rar(R/L,)’ yields 

- 12y2 - 28y3 + 15y4 + 6~‘). (28) 

Result (28) can be plotted to show that the boundary-layer 
thickness 1 - y(x) grows steadily as the fluid travels upward 
[l]. This behavior terminates abruptly at y = 0.392 which 
corresponds to a maximum x/[RaL(R/L)‘] = 0.00457 = 
l/218.83. If we set x = 1 in equation (28) we obtain the 
variation of boundary-layer thickness at the mouth, 1 - y(l) 
with Rayleigh number. It is found that y(l) cannot exceed 
0.392 which implies that Ra,(R/L)’ must be greater than 
218.83 before the boundary-layer flow (23)-(26) can exist. 

Oxen method 
Consider a coordinate system x* - y*, where x* is 

measured vertically along the cylindrical wall, asin Fig. I, and 
y* is measured away from the wall (y* = R - r*). We are 
interested in the flow and temperature pattern in the annular 
region close enough to the vertical wall so that y* << R. In the 
Cartesian system x* - y* the governing equations can be 
written as 

where Y represents the value of y in the center of the cylmder 
(from an equal area argument. Y = R/26). The final results 
are [I] 

Recognizing that - l/w plays the role of boundary-layer 
thickness, one can plot this quantity vs Y and obtain results 
qualitatively similar to the boundary-layer thickness pro- 
duced by the integral method. It is found that the Oseen 
solution is valid for RaJR/L)’ > 768. The temperature and 
velocity vary exponentially near the wall, as indicated in 
equations (42) and (43). 

5. HEAT-TRANSEER RESC~LTS 

An important aspect of the free-convection phenomenon is 
the net heat-transfer interaction between the wall of the 
vertical cylindrical cavity and the semi-infinite reservoir. In 
the arrangement shown in Fig. 1 the fluid flow carries heat 
upward through the mouth of the well at a rate 

PK 
4 = 2n pc,r*u*T* dr*. .s* = I_. 14X) 

I 0 

102 

f 
F 

infegrol bounaory layer 

FIG. 2. Summary of heat-transfer results 
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The Nusselt number associated with this heat-transfer rate is 
defined as 

For heat transfer in the similarity regime, equations (18), 
(19) and (25) were substituted in equation (49) to yield 

R2 
Nu = 0.255 Ra, I . 

0 
(50) 

This result appears as a straight line on Fig. 2, in the range 
RaL(R/L)’ I 11.81 where the similarity regime exists. 

For the boundary-layer regime we developed two so- 
lutions. The Nusselt number calculated from the integral 
solution is shown on Fig. 2 in the range (R/L)‘RaL 2 218.83. 
Using the calculus of limits, one can show that as (R/L)‘Ra,. 
approaches infinity, the Nusselt number is given by 

R 
Nu = 5.62-Rat”. 

L 
(51) 

The Nu result based on the Oseen-linearized boundary-layer 
solution was also plotted on Fig. 2 in the range (R/L)ZRaL L 
768. In the high Ra, limit we obtain: 

R 
Nu = 2x- RaLjZ. 

L 
(52) 

Since in the high Rayleigh-number limit the free convection 
phenomenon inside the well approaches free convection 
along a flat vertical surface, it is possible to compare results 
(51) and (52) with the Nusselt number obtained by Cheng and 
Minkowycz [3] for a vertical plate, 

R 
Nu = 5.58 -Rat”. 

L 
(53) 

Int. J. He& Mass Transfer. Vol. 23, pp. 729-730. 
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Comparing asymptotes (51) and (52) with asymptote (53) we 
find excellent agreement for both boundary-layer solutions 
developed in this paper. In particular, the integral boundary- 
layer solution appears to be the better of the two, its 
asymptotic Nu differing by only 0.7% from the result of Cheng 
and Minkowycz [3]. This comparison supports the validity of 
the Karman-Pohlhausen integral method used in this paper 
to analyze not only the boundary layer regime but also the 
similarity regime. 
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A NOTE ON KUTATELADZES EQUATION FOR PARTIAL 
NUCLEATE BOILING* 

G. GUGLIELMINI and E. NANNEI 

(Received 17 January 1979 and in revisedform 25 November 1979) 

NOMENCLATURE 

k 

hs, 

h b, 

49 
qb, 

to 

heat-transfer coefficient in partial nucleate boil- 
ing; h = q/(t, - t,); 
one-phase forced-convection heat-transfer 
coefficient ; 
heat-transfer coefficient during developed boiling 
[see equation (2) or (3)] ; 
specific heat flux; 
saturated pool boiling heat-flux corresponding to 
temperature f, ; 
bulk temperature; 

*The research reported here has been sponsored by 
C.N.R., Consiglio Nazionale delle Ricerche, Roma (Italy) 
Istituto di Fisica Technica e Impianti Termotecnici, Facolta 
di Ingegneria, Universitl degli Studi di Genova, Via all’opera 
Pia, 11 I 16145, Genova, Italy. 

L saturation temperature; 
t W? wall temperature; 
t w.b, saturated pool boiling wall temperature corres- 

ponding to the heat flux q; 
w, velocity. 

IN THE transition region from forced convection to nucleate 
boiling, the heat-transfer coefficient is affected by the flow 
velocity and degree of subcooling. This influence is observed 
with fluids flowing in tubes or annular spaces and for fluids 
flowing normally to horizontal cylinders. 

In order to evaluate the effect of fluid velocity on the surface 
boiling heat transfer in tubes at saturation conditions, 
Kutateladze [l] proposed the following relationship: 

(1) 


